INTERVENTIONS TO INCREASE CLIMATE RESILIENT INVESTMENTS IN BARBADOS, JAMAICA AND TRINIDAD AND TOBAGO

Identification of Hazards and Resilience Measures
This publication is a shortened version of an extensive study on the identification of hazards and resilience measures in Barbados, Jamaica and Trinidad and Tobago.

The extended study provides more comprehensive information on the methods employed to collect data, analysis and conclusions of the findings on SME and residential landscapes, identification and prioritization of climate hazards, resilience measures, investments and opportunities and market demand for climate resilience measures in Barbados, Jamaica and Trinidad and Tobago for both residential and SME sectors.

The report may be accessed at the following link: Identification of Hazards and Resilience Measures: Interventions to increase climate resilient investments in Barbados, Jamaica and Trinidad and Tobago.
Executive Summary

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Residential and SME Landscape</td>
<td>10</td>
</tr>
<tr>
<td>Climate Hazards</td>
<td>10</td>
</tr>
<tr>
<td>Resiliency Measure, Costs and Returns on Investment</td>
<td>10</td>
</tr>
<tr>
<td>Market Outlook</td>
<td>10</td>
</tr>
<tr>
<td>Climate Risks</td>
<td>11</td>
</tr>
<tr>
<td>Present and Projected Climatic Conditions</td>
<td>12</td>
</tr>
<tr>
<td>Hazards: Damage History and Risks</td>
<td>13</td>
</tr>
<tr>
<td>Prioritisations</td>
<td>16</td>
</tr>
<tr>
<td>Small and Medium Enterprise (SME) and Residential Landscapes</td>
<td>17</td>
</tr>
<tr>
<td>Small and Medium Enterprise Landscape</td>
<td>17</td>
</tr>
<tr>
<td>Residential Landscape</td>
<td>19</td>
</tr>
<tr>
<td>Resilience Measures</td>
<td>21</td>
</tr>
<tr>
<td>Elevating of Structure</td>
<td>21</td>
</tr>
<tr>
<td>Flood Doors</td>
<td>22</td>
</tr>
<tr>
<td>Permanent Flood Barriers</td>
<td>23</td>
</tr>
<tr>
<td>Storm Water Retention and Infiltration Basins</td>
<td>24</td>
</tr>
<tr>
<td>Hurricane/Wind Roof Anchorage to Wall</td>
<td>25</td>
</tr>
<tr>
<td>Impact Resistant Doors and Windows</td>
<td>26</td>
</tr>
<tr>
<td>Hurricane Shutters</td>
<td>27</td>
</tr>
<tr>
<td>Concrete Roof Structures</td>
<td>28</td>
</tr>
<tr>
<td>Minimum Eaves on Buildings</td>
<td>29</td>
</tr>
<tr>
<td>Reducing Heat Gain on Building Envelopes – Roof</td>
<td>30</td>
</tr>
<tr>
<td>Reducing Heat Gain on Building Envelopes – Walls</td>
<td>31</td>
</tr>
<tr>
<td>Reducing Heat Gain on Building Envelopes – Windows</td>
<td>32</td>
</tr>
<tr>
<td>Energy-Efficient Air Conditioning Units</td>
<td>33</td>
</tr>
<tr>
<td>Passive Cooling</td>
<td>34</td>
</tr>
<tr>
<td>Green Roofs</td>
<td>35</td>
</tr>
<tr>
<td>Utilise Efficient Water Fixtures</td>
<td>36</td>
</tr>
<tr>
<td>Rainwater Harvesting</td>
<td>37</td>
</tr>
<tr>
<td>Utilising Alternative Water</td>
<td>38</td>
</tr>
<tr>
<td>Onsite Water Storage Tanks</td>
<td>39</td>
</tr>
<tr>
<td>Conserving Water</td>
<td>40</td>
</tr>
<tr>
<td>Return on Investment</td>
<td>43</td>
</tr>
<tr>
<td>Return on Investment (ROI) Estimates</td>
<td>43</td>
</tr>
<tr>
<td>Barbados ROI estimates of proposed resilience measures for floods and hurricane winds.</td>
<td>44</td>
</tr>
<tr>
<td>Jamaica ROI estimates of proposed resilience measures for floods and hurricane winds.</td>
<td>45</td>
</tr>
<tr>
<td>Trinidad ROI estimates of proposed resilience measures for floods and hurricane winds.</td>
<td>46</td>
</tr>
<tr>
<td>Financial Opportunities</td>
<td>47</td>
</tr>
<tr>
<td>Opportunities in SME Sector</td>
<td>48</td>
</tr>
<tr>
<td>Market Demand</td>
<td>49</td>
</tr>
<tr>
<td>Methodology</td>
<td>49</td>
</tr>
<tr>
<td>Market Size Estimate</td>
<td>49</td>
</tr>
<tr>
<td>Willingness To Pay</td>
<td>49</td>
</tr>
<tr>
<td>Finance and Insurance</td>
<td>50</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>52</td>
</tr>
<tr>
<td>Conclusion</td>
<td>52</td>
</tr>
<tr>
<td>Recommendations</td>
<td>53</td>
</tr>
</tbody>
</table>
Acknowledgement

IDB Invest
Julian Gonzalez Martinez
Malini Samtani

CEAC Solutions Company Limited
Christopher Burgess
Tashae Thompson

Other Contributors
Darren Sirju
Willie Roopchan
Michelle Dubay-Mohess
Vinisha Ramsingh
Nicole West-Hayles
Andre Haughton

Reviewers
Sylvia Dohnert de Lascurain
- Inter-American Development Bank Group
Su Hyun Kim
- Inter-American Development Bank Group
Gerard Johnson
- Small Enterprise Assistance Funds
Adelwyn Holder
- Trinidad and Tobago Green Building Council

Designers
Janine Sale
Damion Mitchell

About IDB Invest
IDB Invest, a member of the IDB Group, is a multilateral development bank committed to promoting the economic development of its member countries in Latin America and the Caribbean through the private sector. IDB Invest finances sustainable companies and projects to achieve financial results and maximize economic, social, and environmental development in the region. With a portfolio of $13.1 billion in asset management and 385 clients in 23 countries, IDB Invest provides innovative financial solutions and advisory services that meet the needs of its clients in a variety of industries.

About CEAC
CEAC Solutions Limited, based in Kingston, Jamaica, is a regional leader in consulting, design, and operations, with a strong reputation for excellence. With expertise in several disciplines, the firm has successfully undertaken civil, environmental, and coastal studies to protect and enhance the hotel, transportation and energy sectors. Its involvement in development initiatives has led to innovations and improvements in housing, subdivisions, and commercial buildings. CEAC has also played a vital role in regional and global climate change adaptation and mitigation strategies, conducting assessments for facilities, housing, energy, and transportation projects in the face of extreme weather impacts. Working closely with Clients, the firm’s engineers and climate scientists determine appropriate climate models and downscaling methods to ensure effective solutions.
Introduction

Caribbean Islands are particularly vulnerable to climate-related risks due to their size and location. Droughts, hurricanes, floods, warmer temperatures, and sea level rise are some of the intensifying dangers that threaten the environment and economic sectors of the region. Therefore, climate adaptation in the form of climate-resilient infrastructure is crucial to endure the effects of climate change.

This document presents the business case outlook for the adoption of climate resiliency measures into designing and constructing residential and commercial structures and building capacity among construction companies in Barbados, Jamaica and Trinidad and Tobago. IDB Invest intends to expand the range of climate adaptive services currently provided by regional SMEs to reduce market inefficiencies.

The main objective is to develop a guide that identifies practicable measures for new and existing residential, commercial, and industrial building construction in Barbados, Jamaica, and Trinidad & Tobago. Added costs associated to the implementation of resiliency measures to typical residential and commercial buildings and the return on investment of such measures were also quantified to justify their incorporation in building design. This will also help educate the public, investors, building experts, and the insurance sector on the major drivers and benefits of taking climate-adaptive and resilient action.

An overview of the residential and SME landscapes, identification of the top four climate risks and corresponding resiliency measures with costs and returns on investment, and a market outlook for Barbados, Jamaica and Trinidad and Tobago are provided.

This was informed by the following activities in the three countries analyzed.
Residential and SME Landscape

1. Research on the size of residential and SME sectors, broken down by demand and industry for each country.

Climate Hazards

1. Identification of climate hazards for the built environment in Barbados, Jamaica and Trinidad and Tobago
2. Prioritisation of the top four climate hazards posing the most significant threats to the built environment, based on historical events, frequency/severity assessment and climate models.

Resiliency Measures, Costs and Returns on Investment

1. Determination of the best resiliency measures and practices in construction based on international best practices and state-of-the-art measures for increasing the adaptability and resilience of commercial and residential buildings.
2. Estimation of cost premiums of these measures over traditional design and construction practices
3. Analysis of existing building codes to assess their compatibility with the proposed best resiliency practices.
4. Estimating return on investment for each benchmarked building resilience measure and the impact of adoption on operational costs.

Market Outlook

1. Market demand study to assess the market size for climate-resilient properties in each island’s residential and commercial sectors, as well as the readiness of people and companies to pay a premium for resilience measures.
2. Surveys to determine insurance products that account for climate-related events and the impact of resiliency measures on insurance premiums.

Introduction

This section examines the identification and prioritisation of climate hazards in the Caribbean.

Rainfall: Analysis of long-term climate data show drying trends in June and July across the three countries but show increasing trends in one-day (RX1) and five-day (RX5) extreme rainfall indices. Projections suggest a continuing of this trend of less annual precipitation but more extreme rainfall events likely leading to more severe floods.

Drought: Precipitation is projected to be reduced 6% to 12%. The projections suggest the likelihood of more drought events.

Hurricane Winds: In a world that is two degrees warmer than pre-industrial times (a 2-degree scenario), there is a 5% projected increase in average peak tropical cyclone wind speeds. Studies also show that the frequency of intense hurricanes will also increase.

Heat: Day and night temperature trends suggest an increase in day and nighttime temperatures since 1980 and underline both hotter days and hotter nights, with reduced diurnal range. This increasing trend is seen across all three countries with the changes more pronounced in Jamaica. This can have negative impact on both sectors but particularly residential.

Sea Level Rise (SLR): Global sea level rise (GSLR) is estimated at a current rate (2006 to 2015) of 3.6mm/year. This is expected to increase bringing sea levels to 0.28m, 0.29m and 0.36m for Barbados, Jamaica and Trinidad and Tobago respectively.

Median monthly temperatures range from 24°C during the coolest months (October to April) and 27°C during the warmest months (May to September) across all three countries.

AIR TEMPERATURE CLIMATOLOGY FOR THE CARIBBEAN SUGGESTS:

Accelerating trend of 0.2°C per decade from 1980 to 2020.

Climate Risks
Climate Risks

Frequency of Tropical Storms (TS) and Hurricanes (HS) within 100 KM for different time periods

Source: NOAA Hurricane

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Barbados</th>
<th>Jamaica</th>
<th>Trinidad & Tobago</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850 - 2021</td>
<td>5.5</td>
<td>7.0</td>
<td>1.4</td>
</tr>
<tr>
<td>1920 - 2021</td>
<td>4.9</td>
<td>4.9</td>
<td>1.7</td>
</tr>
<tr>
<td>1980 - 2021</td>
<td>6.0</td>
<td>6.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Hazards: Damage History and Risks

The Caribbean and Pacific regions have been exposed to severe climate hazards causing damage which resulted in financial and economic losses. Data on damage history was sourced from EM-DAT International Disaster Database, ECLAC study, and Energy Transitions Initiative (ETI) Energy Snapshots. Next, catastrophic events between 1955 and 2021 were studied, and two primary data sources were available in EM-DAT and ECLAC reports.

Finally, the five major hazards were explored:

- **Hurricane winds**
- **Floods**
- **Drought**
- **Sea Level Rise**
- **Heat**

DAMAGE HISTORY AND RISKS PRIORITIZATION

Hurricane winds were the most dominant catastrophic hazard in the Caribbean followed by floods and droughts.

Cyclones affected over 177 million people in Barbados, Jamaica, and Trinidad & Tobago.

Hurricane winds were 10 to 50 times more expensive than floods and 10 to 100 times more expensive than droughts.

Average annualised losses suggest that tropical cyclones, followed by floods, are the two most important climate-related hazards.

The section concludes that consideration of the impacts of both hurricane winds and floods should be prioritised. Coastal flooding and heatwaves have occurred across the three countries, but the costs are considerably less and events relatively infrequent in comparison to cyclones, floods, and droughts.

NUMBER OF RECORDED CATASTROPHIC CLIMATE-RELATED EVENTS SINCE 1955 ACROSS THE THREE COUNTRIES (SOURCE: EMDAT)

- **18 Cyclones**
- **45 Floods**
- **35,016 Affected persons**

Source: EM-DAT

Note: The table and graph data are fictional and for demonstration purposes.
Catastrophic climate-related events time series of persons affected for Barbados, Jamaica and Trinidad and Tobago from 1955 to 2021 from EMDAT.

PERSONS AFFECTED

YEAR:

PERSONS AFFECTED

YEAR:
Climate Risks

Prioritisations

Climate related risks were identified for residential and SME sector in Barbados, Jamaica, and Trinidad and Tobago. The approach involved reviewing and analysing climate information, damage history, and risk assessments, with prioritisation based on a combination of individuals affected and average annual losses (AAL).

Hazards were prioritized as follows: Hurricane winds, floods, extreme heat, drought.

The following shows the climate change impacts for Barbados, Jamaica and Trinidad and Tobago based on climate and damage assessments.

Source: EM-DAT International Disaster Database

Data Sources:
A long-term solution to increasing climate adaptation in the region must include support to local SMEs. Investments into SMEs will build resilience of local economies and communities, and enable the region to address the challenges of climate change.

Due to extreme climate-related events, business continuity impact varies across the SME landscape based on years in business and vulnerability. For instance, 25% of SMEs in the USA do not reopen after extreme events. In addition, unregistered SMEs with less control over improvements and implementing resilience measures may be more vulnerable than those with that are established. Previous studies show that SMEs have difficulty fully recovering from disasters, ie their operations and finances may be affected for a long time afterwards.

The annual demands for residential buildings in all three countries is greater than the market supply by 500, 15,000 and 10,000 for Barbados, Jamaica and Trinidad and Tobago, respectively.

DATA SOURCES:

Distribution of Types of Dwelling Units by Country

Barbados
- **Separate House**: 67,721
- **Flat, Apt, Townhouse**: 10,886
- **Part of Commercial Bldg.**: 370
- **Other/Not Stated**: 179

Jamaica
- **Separate House**: 642,650
- **Flat, Apt, Townhouse**: 53,753
- **Part of Commercial Bldg.**: 10,410
- **Other/Not Stated**: 4,518

Trinidad and Tobago
- **Separate House**: 306,906
- **Flat, Apt, Townhouse**: 80,203
- **Part of Commercial Bldg.**: 8,246
- **Other/Not Stated**: 4,218

1. Due to location and intensifying hazards, Caribbean residential and SME developments are susceptible to climate-related impacts.
2. The size of the SME landscape is estimated to be: The SME sector employs 23% to 56% of the workforce, with the wholesale and retail trade sectors dominating all three countries.
3. Barbados
 - Jamaika
 - Trinidad and Tobago

The residential landscape consists of demands mostly met by detached units across the three countries. As a result, current demands outstrip market supply in all three countries with deficits of unmet annual demands of 500, 15,000 and 10,000 for Barbados, Jamaica and Trinidad and Tobago, respectively.
The methodology to determine international best practices for residential and SME structures included desktop research for the hazards to gather information on recommended international best practices for mitigation measures. A review of past studies on flooding and hurricanes also assisted in identifying mitigation measures that could apply to Trinidad, Jamaica and Barbados. In addition, drought and high temperatures were analysed using energy models.

Archetypes were proposed for residential and commercial buildings to enable cost comparison of resilience measures. The Return on Investment (ROI) was used to determine the profitability by dividing the investment’s cost-benefit by its initial cost. The ROI was computed from the aggregated current value of the benefits and the cost of the resilience measure, factoring in the prevailing market costs and a climate change factor for incremental climate-related costs.

Resilience Measures

The Jamaica Building Code includes requirements for storm water retention. The Jamaica Building Code recommends the use of storm water retention and infiltration basins to collect excess water during a rainfall event and recharge groundwater aquifers.

Flood Barriers

Flood barriers prevent floods from infiltrating weak spots such as doors and windows, while also bearing the impact loads caused by flood waters. They can be used in tandem with flood doors.

Elevation of Structures

Elevating a structure to avoid floods can prevent property damage and prevent loss of life. This can be done using columns, piles, foundation perimeter walls or marl pads.

Best Practice/Recommendation:

- **Village Green, Bridgetown**
 - **HAZARD ADDRESSED:** Flooding
 - **CONSIDERATIONS:**
 - Increase in cost of construction for an elevated structure.
 - Additional cost for services such as plumbing and electrical to the structure

Resilience Measures

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>OPTION</th>
<th>BARBADOS Capital Cost ($US)</th>
<th>BARBADOS ROI 5 years</th>
<th>JAMAICA Capital Cost ($US)</th>
<th>JAMAICA ROI 5 years</th>
<th>TRINIDAD Capital Cost ($US)</th>
<th>TRINIDAD ROI 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Building on piles</td>
<td>$9,800.00</td>
<td>0.3x</td>
<td>$9,600.00</td>
<td>1.6x</td>
<td>$9,800.00</td>
<td>0.3x</td>
</tr>
<tr>
<td></td>
<td>Concrete pads</td>
<td>$4,000.00</td>
<td>3.5x</td>
<td>$2,000.00</td>
<td>9.5x</td>
<td>$4,000.00</td>
<td>3.5x</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>Concrete pads</td>
<td>$1,000.00</td>
<td>7.5x</td>
<td>$1,000.00</td>
<td>15.5x</td>
<td>$1,000.00</td>
<td>7.5x</td>
</tr>
</tbody>
</table>
FLOOD DOORS

Flood doors prevent water ingress from entering homes/buildings during flood events. This measure provides no disruption to day-to-day activities and does not need activation.

HAZARD ADDRESSED: FLOODING

Best Practice/Recommendation:
• A floodplain assessment informs the decision to use this measure.
• Useful for entrances of structures to prevent water intrusion.

OTHER CONSIDERATIONS:
• Proper installation of flood door to maximise its benefits.
• Increase in cost for installation and maintenance.

PERMANENT FLOOD BARRIERS

Flood barriers prevent floods from infiltrating weak spots such as doors and windows, while also bearing the impact loads caused by flood waters. They can be used in tandem with flood doors or be placed in other areas and can be fixed or demountable.

HAZARD ADDRESSED: FLOODING

The Jamaica Building Code recommends the use of flood barriers.

BEST PRACTICE/RECOMMENDATION:
• Assessment of Flood Plain
• Useful for entrances/ driveways of structures to prevent water intrusion.

OTHER CONSIDERATIONS:
• Proper installation of permanent flood barriers to maximise its benefits.
• Additional cost for services such as plumbing and electrical to the structure.
• Barriers may require activation during flooding activities.

OTHER CONSIDERATIONS:
• Increase in cost for services such as plumbing and electrical to the structure.
• Barriers may require activation during flooding activities.

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>$2,000.00</td>
<td>$2,000.00</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$700.00</td>
<td>$700.00</td>
<td>$700.00</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>$2,000.00</td>
<td>$2,000.00</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>ROI in 5 years</td>
<td>0.5x</td>
<td>0.5x</td>
<td>0.5x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>$2,300.00</td>
<td>$2,300.00</td>
<td>$2,300.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$8,900.00</td>
<td>$8,900.00</td>
<td>$8,900.00</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>$2,300.00</td>
<td>$2,300.00</td>
<td>$2,300.00</td>
</tr>
<tr>
<td>ROI in 5 years</td>
<td>-1.5x</td>
<td>-1.5x</td>
<td>-1.5x</td>
</tr>
</tbody>
</table>
Flood barriers prevent floods from infiltrating weak spots such as doors and windows, while also bearing the impact loads caused by flood waters. They can be used in tandem with flood doors.

STORM WATER RETENTION & INFILTRATION BASINS

- **HAZARD ADDRESSED:** Flooding
- **Other Considerations:**
 - Requires acquisition of large areas of land
 - Increase in cost of construction and maintenance.

ARCHETYPE

<table>
<thead>
<tr>
<th></th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Cost ($US)</td>
<td>ROI in 5 years</td>
<td>Capital Cost ($US)</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$11,800.00</td>
<td>5.8x</td>
<td>$11,800.00</td>
</tr>
</tbody>
</table>

BUILDING CODES:

- The Jamaica Building Code includes requirements for storm water retention.

BEST PRACTICE/RECOMMENDATION:

- Helpful in strengthening the building against high wind forces
- Different roof clips/ties for different sections and uses

Resilience Measures

HURRICANE/WIND ROOF ANCHORAGE TO WALL

- **HAZARD ADDRESSED:** Hurricane
- **Other Considerations:**
 - Proper installation is required.
 - Retrofitting the straps/ties is costly.

ARCHETYPE

<table>
<thead>
<tr>
<th></th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Cost ($US)</td>
<td>ROI in 5 years</td>
<td>Capital Cost ($US)</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$190.00</td>
<td>60.3x</td>
<td>$190.00</td>
</tr>
</tbody>
</table>

OTHER CONSIDERATIONS:

- Construction and preparation, installation & maintenance of the clips/ties are required.
Walls should possess a good insulative value to reduce heat transfer to the building. Impact-resistant doors and windows are designed to withstand hurricane winds. These windows and doors help prevent wind-borne debris and water intrusion from hurricanes and floods.

Best Practice/Recommendation:
- **Impact Resistant Doors and Windows**
 - Helps to reduce heat gain on the building.
 - Helps to prevent uplift of roof by preventing wind pressures from entering the building.
 - May also hold back flood waters and minimize flood damage.

Building Codes:
- The Jamaica Building and International Building code recommend using impact-resistant doors and windows.

Hazard Addressed:
- Hurricane, Heat Waves

Other Considerations:
- Proper installation is required to be effective.
- Costly

Archetype

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Barbados Capital Cost ($US)</th>
<th>Barbados ROI in 5 years</th>
<th>Jamaica Capital Cost ($US)</th>
<th>Jamaica ROI in 5 years</th>
<th>Trinidad Capital Cost ($US)</th>
<th>Trinidad ROI in 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>$3,800.00</td>
<td>6.5x</td>
<td>$3,800.00</td>
<td>14x</td>
<td>$3,800.00</td>
<td>6.5x</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$1,900.00</td>
<td>14x</td>
<td>$1,900.00</td>
<td>29x</td>
<td>$1,900.00</td>
<td>22.6x</td>
</tr>
</tbody>
</table>

Hurricane Shutters

Hurricane shutters prevent hurricane winds and wind-borne debris from penetrating the doors and windows.

Building Codes:
- The Jamaica Building Code recommends the use of shutters.

Hazard Addressed:
- Hurricanes

Other Considerations:
- Proper installation is required to be effective.
- Costly
- Installation/Activation required during an event.

Archetype

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Barbados Capital Cost ($US)</th>
<th>Barbados ROI in 5 years</th>
<th>Jamaica Capital Cost ($US)</th>
<th>Jamaica ROI in 5 years</th>
<th>Trinidad Capital Cost ($US)</th>
<th>Trinidad ROI in 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>$1,900.00</td>
<td>14x</td>
<td>$1,900.00</td>
<td>29x</td>
<td>$1,900.00</td>
<td>14x</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$3,600.00</td>
<td>10.8x</td>
<td>$3,600.00</td>
<td>22.6x</td>
<td>$3,600.00</td>
<td>10.8x</td>
</tr>
</tbody>
</table>
This system collects roof runoff in moderate to heavy rainfalls events for resilience measures.

Resilience Measures

Concrete Roof Structures

Concrete roofs help prevent the roof from being uplifted during a hurricane event as it can resist higher wind loads, while also preventing water infiltration.

HAZARD ADDRESSED:
- Hurricanes, Heat Waves

Best Practice/Recommendation:
- Helpful in protecting against high wind forces.

OTHER CONSIDERATIONS:
- Design of structure to consider seismic forces and increase loads from the roof.
- Increase in cost of construction of roof and maintenance.
- Susceptible to leakage
- Increased heat gain on building

Minimum Eaves on Building

The eaves on the building are subjected to high wind pressures on a structure. Keeping the eaves to a minimum helps to reduce the uplift forces on the roof by extreme winds.

HAZARD ADDRESSED:
- Hurricanes

Best Practice/Recommendation:
- Helpful in protecting against high wind forces

OTHER CONSIDERATIONS:
- Increased heat inside the structure

Table: Capital Cost and ROI

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Cost ($US)</td>
<td>ROI in 5 years</td>
<td>Capital Cost ($US)</td>
</tr>
<tr>
<td>Residential</td>
<td>$8,900.00</td>
<td>0.5x</td>
<td>$8,900.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$574,000.00</td>
<td>13x</td>
<td>$574,000.00</td>
</tr>
</tbody>
</table>

Diagram showing roof eaves

Diagram showing roof eaves

Other hazards addressed:
- FLOODING, DROUGHT
- CONSIDERATIONS:
 - Assessment of Flood Plain
 - A floodplain assessment informs the decision to use flood doors to maximise its need activation.

OTHER:
- Installation of flood door to maximise its need activation.

Best Practice/Recommendation:
- Helpful in protecting against high wind forces.
- Increased heat inside the structure.
- Increased heat gain on building.

Installation Diagram:

- Diagram showing roof eaves

Best Practice/Recommendation:
- Helpful in protecting against high wind forces.
- Increased heat inside the structure.

Other hazards addressed:
- FLOODING, HEAT WAVES
- CONSIDERATIONS:
 - Assessment of Flood Plain
 - A floodplain assessment informs the decision to use flood doors to maximise its need activation.

OTHER:
- Installation of flood door to maximise its need activation.

Best Practice/Recommendation:
- Helpful in protecting against high wind forces.
- Increased heat inside the structure.
- Increased heat gain on building.

Other hazards addressed:
- FLOODING, DROUGHT
- CONSIDERATIONS:
 - Assessment of Flood Plain
 - A floodplain assessment informs the decision to use flood doors to maximise its need activation.

OTHER:
- Installation of flood door to maximise its need activation.
Resilience Measures

REDUCING HEAT GAIN ON BUILDING ENVELOPES - WALL

Walls should possess a good insulative value to reduce heat transfer to inside the building. Composite walls with insulation or filling can be used in place of conventional materials.

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>OPTION</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Prefabricated wall with insulation</td>
<td>$450.00</td>
<td>$495.00</td>
<td>$450.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>Prefabricated wall with insulation and barrier</td>
<td>$450.00</td>
<td>$450.00</td>
<td>$450.00</td>
</tr>
</tbody>
</table>

HAZARD ADDRESSED:
- Heat gain

BEST PRACTICE/RECOMMENDATION:
- Use heat barriers such as fiberglass insulation, a layer of radiant barrier with 10 mm insulation, metal roof sheathing with an insulative ceiling, wooden roof tiles with waterproofing asphalt and installation of a photovoltaic system on a metal roof.
- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.

BUILDING CODES:

OTHER CONSIDERATIONS:
- The Jamaica Building Code recommends the use of impact-resistant doors and radiant barrier. Alternative roofing materials can also be considered.

CARICOM REGIONAL STANDARDS:
- The CARICOM Regional Standards Organisation (CROS) provides guidelines for reducing heat gain in buildings.

HEAT WAVES:
- The CARICOM Regional Building Code provides guidelines for reducing heat gain in buildings.

CONSIDERATIONS:
- The Caribbean Building and Transport Office, Caroni, Trinidad and Tobago, recommends using high-impact doors.

HURRICANE, HEAT WAVES:
- The Jamaica Building Code recommends using hurricane shutters to prevent hurricane winds and wind-borne debris from entering the building.

BUILDING CODES:

HAZARD ADDRESSED:
- Uplift of roof
- Debris from hurricane winds
- Water intrusion

BEST PRACTICE/RECOMMENDATION:
- Proper installation is required during an event.
- Maintenance may be required to be effective.
- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.

BUILDING CODES:

OTHER CONSIDERATIONS:
- The Caribbean Building and Transport Office, Caroni, Trinidad and Tobago, recommends using high-impact doors.

HAZARD ADDRESSED:
- Uplift of roof
- Debris from hurricane winds
- Water intrusion

BEST PRACTICE/RECOMMENDATION:
- Proper installation is required during an event.
- Maintenance may be required to be effective.
- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.

BUILDING CODES:

OTHER CONSIDERATIONS:
- The Caribbean Building and Transport Office, Caroni, Trinidad and Tobago, recommends using high-impact doors.

HAZARD ADDRESSED:
- Uplift of roof
- Debris from hurricane winds
- Water intrusion

BEST PRACTICE/RECOMMENDATION:
- Proper installation is required during an event.
- Maintenance may be required to be effective.
- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.

BUILDING CODES:

OTHER CONSIDERATIONS:
- The Caribbean Building and Transport Office, Caroni, Trinidad and Tobago, recommends using high-impact doors.

HAZARD ADDRESSED:
- Uplift of roof
- Debris from hurricane winds
- Water intrusion

BEST PRACTICE/RECOMMENDATION:
- Proper installation is required during an event.
- Maintenance may be required to be effective.
- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.

BUILDING CODES:

OTHER CONSIDERATIONS:
- The Caribbean Building and Transport Office, Caroni, Trinidad and Tobago, recommends using high-impact doors.

HAZARD ADDRESSED:
- Uplift of roof
- Debris from hurricane winds
- Water intrusion

BEST PRACTICE/RECOMMENDATION:
- Proper installation is required during an event.
- Maintenance may be required to be effective.
- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.

BUILDING CODES:

OTHER CONSIDERATIONS:
- The Caribbean Building and Transport Office, Caroni, Trinidad and Tobago, recommends using high-impact doors.

HAZARD ADDRESSED:
- Uplift of roof
- Debris from hurricane winds
- Water intrusion

BEST PRACTICE/RECOMMENDATION:
- Proper installation is required during an event.
- Maintenance may be required to be effective.
- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.

BUILDING CODES:

OTHER CONSIDERATIONS:
- The Caribbean Building and Transport Office, Caroni, Trinidad and Tobago, recommends using high-impact doors.
Resilience Measures

REDUCING HEAT GAIN ON BUILDING ENVELOPES - WINDOWS

Windows should also possess a good insulation value and can be double-glazed to reduce heat transfer to the internal space. Window overhangs/shadings can also be introduced to reduce the window’s direct exposure to the sun.

HAZARD ADDRESSED: Drought

OTHER CONSIDERATIONS:
- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.
- Aesthetics of the

BUILDING CODES:

ARCHETYPE OPTION
- Residential: Install double-glazed windows
- SME Warehouse: Install double-glazed windows

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>OPTION</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Install double-glazed windows</td>
<td>$3,000.00</td>
<td>$1,000.00</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>Install double-glazed windows</td>
<td>$700.00</td>
<td>$700.00</td>
<td>$700.00</td>
</tr>
</tbody>
</table>

ENERGY-EFFICIENT AIR CONDITIONING UNITS

Energy efficient air conditioning often create ideal thermal conditions within a space. Inverter or solar options help to reduce emissions and manage costs.

HAZARD ADDRESSED: Alternative Water

OTHER CONSIDERATIONS:
- Increase in cost for installation and maintenance.
- Additional electrical requirements
- Many options available

CARICOM Regional Standard CRS 59 Energy Labelling – Air Conditioners

- Best Practice/Recommendation:
 - Expert recommended to storage space required.
 - Increase in cost for requirements installation.
 - Many options available

ARCHETYPE OPTION
- Residential: VRF Inverter AC units
- SME Warehouse: VRF Inverter AC units

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>OPTION</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>VRF Inverter AC units</td>
<td>$900.00</td>
<td>$900.00</td>
<td>$900.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>VRF Inverter AC units</td>
<td>$12,000.00</td>
<td>$12,000.00</td>
<td>$12,000.00</td>
</tr>
</tbody>
</table>

CONSIDERATIONS:
- Polyethylene water tanks are useful for storage of water that can be harvested is based on actual rainfall through the year. Water that can be harvested is based on actual rainfall through the year.
- Polyethylene water tanks are useful for storage of water that can be harvested is based on actual rainfall through the year.
- Polyethylene water tanks are useful for storage of water that can be harvested is based on actual rainfall through the year.

HAZARD ADDRESSED: Rainwater

OTHER CONSIDERATIONS:
- Water efficient fixtures reduce the consumption of water by including aerators, flow restrictors and operating with less volume of water.
- Can also be used to recycle useful
- Grey water for irrigation

<table>
<thead>
<tr>
<th>OPTIONS</th>
<th>CONSIDERATIONS</th>
<th>RESILIENCE MEASURES</th>
<th>COST</th>
<th>ROI</th>
<th>COST</th>
<th>ROI</th>
<th>COST</th>
<th>ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite water storage tanks</td>
<td>Maintenance, Expert recommended to correct sizing of installation.</td>
<td>$1,100.00</td>
<td>24.7x</td>
<td>$1,100.00</td>
<td>13.8x</td>
<td>$30.00</td>
<td>-0.9x</td>
<td></td>
</tr>
<tr>
<td>Onsite water storage tanks</td>
<td></td>
<td>$1,100.00</td>
<td>24.7x</td>
<td>$1,100.00</td>
<td>13.8x</td>
<td>$30.00</td>
<td>-0.9x</td>
<td></td>
</tr>
<tr>
<td>Onsite water storage tanks</td>
<td></td>
<td>$1,100.00</td>
<td>24.7x</td>
<td>$1,100.00</td>
<td>13.8x</td>
<td>$30.00</td>
<td>-0.9x</td>
<td></td>
</tr>
<tr>
<td>Onsite water storage tanks</td>
<td></td>
<td>$1,100.00</td>
<td>24.7x</td>
<td>$1,100.00</td>
<td>13.8x</td>
<td>$30.00</td>
<td>-0.9x</td>
<td></td>
</tr>
</tbody>
</table>

- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.
- Aesthetics of the

BUILDING CODES:

ARCHETYPE OPTION
- Residential: Install double-glazed windows
- SME Warehouse: Install double-glazed windows

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>OPTION</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Install double-glazed windows</td>
<td>$3,000.00</td>
<td>$1,000.00</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>Install double-glazed windows</td>
<td>$700.00</td>
<td>$700.00</td>
<td>$700.00</td>
</tr>
</tbody>
</table>

CONSIDERATIONS:
- Polyethylene water tanks are useful for storage of water that can be harvested is based on actual rainfall through the year.
- Polyethylene water tanks are useful for storage of water that can be harvested is based on actual rainfall through the year.
- Polyethylene water tanks are useful for storage of water that can be harvested is based on actual rainfall through the year.

HAZARD ADDRESSED: Drought

OTHER CONSIDERATIONS:
- Water efficient fixtures reduce the consumption of water by including aerators, flow restrictors and operating with less volume of water.
- Can also be used to recycle useful
- Grey water for irrigation

- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.
- Aesthetics of the

BUILDING CODES:

ARCHETYPE OPTION
- Residential: Install double-glazed windows
- SME Warehouse: Install double-glazed windows

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>OPTION</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Install double-glazed windows</td>
<td>$3,000.00</td>
<td>$1,000.00</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>Install double-glazed windows</td>
<td>$700.00</td>
<td>$700.00</td>
<td>$700.00</td>
</tr>
</tbody>
</table>

CONSIDERATIONS:
- Polyethylene water tanks are useful for storage of water that can be harvested is based on actual rainfall through the year.
- Polyethylene water tanks are useful for storage of water that can be harvested is based on actual rainfall through the year.
- Polyethylene water tanks are useful for storage of water that can be harvested is based on actual rainfall through the year.

HAZARD ADDRESSED: Rainwater

OTHER CONSIDERATIONS:
- Water efficient fixtures reduce the consumption of water by including aerators, flow restrictors and operating with less volume of water.
- Can also be used to recycle useful
- Grey water for irrigation

- Many different options are available.
- Increase in cost for installation.
- Maintenance may be required depending on the option selected.
- Aesthetics of the

BUILDING CODES:

ARCHETYPE OPTION
- Residential: Install double-glazed windows
- SME Warehouse: Install double-glazed windows

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>OPTION</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Install double-glazed windows</td>
<td>$3,000.00</td>
<td>$1,000.00</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>Install double-glazed windows</td>
<td>$700.00</td>
<td>$700.00</td>
<td>$700.00</td>
</tr>
</tbody>
</table>
Resilience Measures

PASSIVE COOLING

Windows and doors should be facing the direction of the flowing winds to allow for natural ventilation. The solar heat gained from windows and doors can be reduced by facing them away from the rising and setting sun directions.

HAZARD ADDRESSED: HEAT

Best Practice/Recommendation:
- Helpful in reducing heat
- To be considered during design stages to account for additional weight on the structure.

OTHER CONSIDERATIONS:
- Increase in cost of construction.
- Aesthetics of the structure

GREEN ROOFS

A green roof/living roof refers to a layer of vegetation atop a building and may include drainage and irrigation systems. Green Roofs aid in reducing the amount of water in the runoff due to its ability to store water in the soil substrate.

HAZARD ADDRESSED: FLOODING, HEAT WAVES

Best Practice/Recommendation:
- Assessment of Flood Plain.
- To be considered during design stages to account for additional weight on the structure.
- Needs professional expertise

OTHER CONSIDERATIONS:
- Design of structure to consider seismic and wind forces.
- Increase in cost of construction of a roof.
- Access to the roof is required.
- Increase in maintenance.
Resilience Measures

UTILISE EFFICIENT WATER FIXTURES

Water efficient fixtures reduce the consumption of water by installing sensors, flow restrictors and operating with less volume of water.

HAZARD ADDRESSED: DROUGHT

BEST PRACTICE/RECOMMENDATION:

- Increase in maintenance.
- Public sensitization campaigns by local and regional bodies can be useful

OTHER CONSIDERATIONS:

- Access to the roof is required.
- Can also be done during or after construction

ARCHITYPE

<table>
<thead>
<tr>
<th>OPTION</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Cost (US$)</td>
<td>ROI in 5 years</td>
<td>Capital Cost (US$)</td>
</tr>
<tr>
<td>Residential</td>
<td>$100.00</td>
<td>0.9</td>
<td>$1,900.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$1,000.00</td>
<td>0.8</td>
<td>$1,900.00</td>
</tr>
</tbody>
</table>

RAINFALL HARVESTING

This system collects roof runoff in moderate to heavy rain fall events for storage in water tanks for later use. This reduces the surface runoff into drains and water demands.

HAZARD ADDRESSED: FLOODING, DROUGHT

BEST PRACTICE/RECOMMENDATION:

- Assessment of Flood Plain
- Useful for water collection
- Can be done during or after construction

OTHER CONSIDERATIONS:

- Requires space around the structure.
- Increase in cost for installation and maintenance.
- Limitation on storage capacity
- Helps to reduce consumption costs

ARCHITYPE

<table>
<thead>
<tr>
<th>OPTION</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Cost (US$)</td>
<td>ROI in 5 years</td>
<td>Capital Cost (US$)</td>
</tr>
<tr>
<td>Residential</td>
<td>$240.00</td>
<td>7.6</td>
<td>$240.00</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$8,600.00</td>
<td>0.5</td>
<td>$8,600.00</td>
</tr>
</tbody>
</table>
Resilience Measures

UTILISING ALTERNATIVE WATER

- **HAZARD ADDRESSED:** DROUGHT
 - Best Practice/Recommendation:
 - Use internal blinds, external overhangs and blinds, and Low-E double-glazed windows.
 - Window overhangs/shadings can also be introduced to reduce the window’s direct exposure to the sun.
 - Internal blinds for windows are also recommended.

- **OTHER CONSIDERATIONS:**
 - Air conditioning often creates ideal thermal conditions within a space. Inverter or solar options help to reduce emissions and manage costs.

Alternative Water
- Alternative water can include
 - AC condensate
 - Grey water

Barriers and Solutions
- **SME Warehouse**
 - **Barbados:** $1,600.00
 - **ROI 5 years:** 7.4x

Storage Tanks
- Rainwater can be captured and stored via tanks and cisterns and then used for flushing of toilets & irrigating the landscape. The quantity of water that can be harvested is based on actual rainfall through the year.

Storage Tank Costs
- **SME Warehouse**
 - **Barbados:** $8,600.00
 - **ROI 5 years:** -0.3x

Water Storage Tanks

Tables
<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>$240.00</td>
<td>$240.00</td>
<td>$163.20</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$900.00</td>
<td>$900.00</td>
<td>$690.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARCHETYPE</th>
<th>BARBADOS</th>
<th>JAMAICA</th>
<th>TRINIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>$240.00</td>
<td>$240.00</td>
<td>$163.20</td>
</tr>
<tr>
<td>SME Warehouse</td>
<td>$900.00</td>
<td>$900.00</td>
<td>$690.67</td>
</tr>
</tbody>
</table>
Return on Investment (ROI) Estimates

The Return on Investment (ROI) is used to determine the profitability of an investment by dividing the investment’s cost-benefit by its initial cost. The ROI estimates for different resilience measures were determined and used to prioritise opportunities for resilience measures. Archetypes (prototypes) were proposed for residential and commercial buildings to enable cost comparison of resilience measures. The archetypes used were 70m² affordable-income residential solutions, with concrete walls and hip or slab roofs (Trinidad and Tobago and Barbados) and concrete walls with concrete slab roof (Jamaica) and 465m² commercial warehouses with mezzanine floors and steel sheeting cladding, or masonry walls office type buildings.

The prevailing market costs were used as an initial basis, and a climate change factor was applied to determine the incremental climate change cost of the resilience measure. Benefits throughout the measures’ economic life were identified year-by-year, and present values were determined using discounted cash flow techniques. The ROI was then computed from the aggregated current value of the benefits and the cost of the resiliency measure. The prioritised list of measures was reduced to the most pragmatic for each prioritised hazard for each country and options that developers rather than owners would most likely implement.

This method is consistent with Green Climate Fund policy and avoids double counting measures that should already be included to comply with building codes and respond to natural hazards.
Barbados ROI estimates of proposed resilience measures for floods, hurricane winds, drought and heat.

<table>
<thead>
<tr>
<th>HAZARDS</th>
<th>ARCHETYPE</th>
<th>MITIGATION MEASURE</th>
<th>COST OF EACH RESILIENCE MEASURE</th>
<th>DERIVED BENEFITS IN OVER 5 YEARS</th>
<th>ROI WITH RESPECT TO CLIMATE CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood</td>
<td>Residential - Affordable income</td>
<td>Using fill to make up levels contained with block base walls</td>
<td>$640</td>
<td>$2,000</td>
<td>3.1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation of flood doors</td>
<td>$1,800</td>
<td>$2,000</td>
<td>0.1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water retention and infiltration</td>
<td>$150</td>
<td>$2,000</td>
<td>0.2x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Elevation of structures</td>
<td>$368</td>
<td>$2,075</td>
<td>3.4x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevation of equipment</td>
<td>$1,824</td>
<td>$2,257</td>
<td>0.8x</td>
</tr>
<tr>
<td>Hurricane Winds</td>
<td>Residential - Affordable income</td>
<td>Installation of hurricane roof clips and ties</td>
<td>$9</td>
<td>$103</td>
<td>11.4x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Installation of hurricane roof clips and ties</td>
<td>$80</td>
<td>$106</td>
<td>1.3x</td>
</tr>
<tr>
<td>Drought</td>
<td>Residential - Affordable income</td>
<td>Install high efficiency toilets</td>
<td>$980</td>
<td>$600</td>
<td>0.3x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Install high efficiency toilets</td>
<td>$800</td>
<td>$600</td>
<td>0.5x</td>
</tr>
<tr>
<td>Heat</td>
<td>Residential - Affordable income</td>
<td>Prodex 10mm insulation and radiant barrier</td>
<td>$450</td>
<td>$3,650</td>
<td>7.7x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Prodex 10mm insulation and radiant barrier</td>
<td>$123</td>
<td>$48,390</td>
<td>393.3x</td>
</tr>
</tbody>
</table>

Jamaica ROI estimates of proposed resilience measures for floods, hurricane winds, drought and heat.

<table>
<thead>
<tr>
<th>HAZARDS</th>
<th>ARCHETYPE</th>
<th>MITIGATION MEASURE</th>
<th>COST OF EACH RESILIENCE MEASURE</th>
<th>DERIVED BENEFITS IN OVER 5 YEARS</th>
<th>ROI WITH RESPECT TO CLIMATE CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood</td>
<td>Residential - Affordable income</td>
<td>Using fill to make up levels contained with block base walls</td>
<td>$320</td>
<td>$3,375</td>
<td>9.8x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Water retention and infiltration</td>
<td>$104</td>
<td>$3,375</td>
<td>3.1x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevation of structures</td>
<td>$368</td>
<td>$2,875</td>
<td>2.9x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevation of equipment</td>
<td>$1,824</td>
<td>$2,875</td>
<td>6.3x</td>
</tr>
<tr>
<td>Hurricane Winds</td>
<td>Residential - Affordable income</td>
<td>Installation of hurricane roof clips and ties</td>
<td>$9</td>
<td>$103</td>
<td>15.6x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Installation of hurricane roof clips and ties</td>
<td>$80</td>
<td>$106</td>
<td>1.3x</td>
</tr>
<tr>
<td>Drought</td>
<td>Residential - Affordable income</td>
<td>Install high efficiency toilets</td>
<td>$800</td>
<td>$350</td>
<td>0.6x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Install high efficiency toilets</td>
<td>$800</td>
<td>$350</td>
<td>0.4x</td>
</tr>
<tr>
<td>Heat</td>
<td>Residential - Affordable income</td>
<td>Prodex 10mm insulation and radiant barrier</td>
<td>$450</td>
<td>$2,180</td>
<td>3.7x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Use concrete filling to block walls</td>
<td>$91</td>
<td>$445</td>
<td>4.9x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prodex 10mm insulation and radiant barrier</td>
<td>$48,390</td>
<td>$2,180</td>
<td>393.3x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4" gypsum board lining</td>
<td>$194</td>
<td>$488</td>
<td>2.6x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prodex 10mm insulation and radiant barrier</td>
<td>$123</td>
<td>$38,785</td>
<td>315.6x</td>
</tr>
</tbody>
</table>

Return on Investment

Return on Investment
Trinidad and Tobago ROI estimates of proposed resilience measures for floods, hurricane winds, drought and heat.

<table>
<thead>
<tr>
<th>HAZARDS</th>
<th>ARCHETYPE</th>
<th>MITIGATION MEASURE</th>
<th>COST OF EACH RESILIENCE MEASURE WITH RESPECT TO CLIMATE CHANGE</th>
<th>RETURN ON INVESTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood</td>
<td>Residential - Affordable Income</td>
<td>Using fitts to make up levels contained with block base walls</td>
<td>$640 $2,000 3.2x</td>
<td>$1,592 $4,000 2.5x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Water retention and infiltration</td>
<td>$1,592 $4,000 2.5x</td>
<td>$1,592 $4,000 2.5x</td>
</tr>
<tr>
<td></td>
<td>Residential - Affordable Income</td>
<td>Elevation of structure</td>
<td>$1,592 $4,000 2.5x</td>
<td>$1,592 $4,000 2.5x</td>
</tr>
<tr>
<td></td>
<td>SME - Warehouse</td>
<td>Elevation of equipment</td>
<td>$1,592 $4,000 2.5x</td>
<td>$1,592 $4,000 2.5x</td>
</tr>
</tbody>
</table>

Average ROI estimates on Resilience Measures for the residential and commercial sectors for Barbados, Jamaica and Trinidad and Tobago.

Financial Opportunities

Currently, there are various financing mechanisms available to support climate-resilient solutions for heat, drought, flood, and hurricane-resistant measures including:

- International Climate Funds such as the Green Climate Fund (GCF) and the Adaptation Fund provide financial resources to developing countries for climate change adaptation and resilience projects.
- Multilateral Development Banks (MDBs) such as the Inter-American Development Bank Group (IDBG) offer financing and technical assistance for climate resilience projects.
- National Climate Funds that finance climate resilience initiatives.
- Public-Private Partnerships (PPPs) bring together public and private sector entities to jointly finance and implement climate resilience projects.
- Insurance and Risk Transfer Mechanisms such as catastrophe bonds, can provide financial protection against climate-related risks.
- Climate finance innovation mechanisms attract capital from investors interested in supporting sustainable and resilient projects.
- Increasingly, banks and other financial institutions are seeking green investments including climate-resilient investments.

The availability and accessibility of these financing mechanisms may vary between countries.

From consultations with national and regional agencies of the three target countries, current opportunities for the introduction of financial products targeting climate-resilient infrastructure are more likely to be in the areas of Agricultural warehousing, Distribution goods warehousing and Provision of low-income and affordable housing.

Opportunities in SME Sector

Several opportunities exist based on the gap between possible resilience solutions and those currently employed. Opportunities exist for:

1. Retailing certain materials such as hurricane shutters, radiant barriers and low-flow water fixtures.
2. Provide design and installation services for less popular resilience measures such as rainwater harvesting systems, flood barriers and photovoltaic systems.
Methodology
The study assessed the demand for climate-resilient infrastructure in the three island territories using a combination of secondary and primary data sources, qualitative and quantitative approaches, and two surveys. The study looked at people’s willingness to pay for climate-resilient infrastructure, the use of insurance as a resiliency measure, and the cost and affordability of various options. Each of the three countries’ market sizes was estimated using the data.

Market Size Estimate (MSE)
The market demand was calculated using a formula considering an individual’s ability and willingness to pay. As a result, the study estimated the 5-year potential market size for residential and commercial properties in the three countries to be US$6.25 billion, US$14.8 billion, and US$10 billion for residential and US$1.15 billion, US$2.2 billion, and US$2.5 billion for commercial, respectively.

Market size estimate for Barbados, Jamaica and Trinidad and Tobago

The study also discovered that the highest annual demand for residential units was for three bedrooms in Barbados and Trinidad and Tobago and two bedrooms in Jamaica. In all three countries, most commercial unit demand was for units priced between $100,000 and US$250,000. The study estimated market size using mathematical and economic calculations based on current market conditions such as income, affordability, cost, interest, and inflation rates.

Willingness To Pay (WTP)
The Willingness to Pay (WTP) survey was conducted in Barbados, Jamaica and Trinidad and Tobago to measure and quantify factors influencing the purchase of climate-resilient infrastructure. According to the survey, access to financing, affordability and cost were the most important motivators in decision-making, while exposure to extreme weather events was among the least important. The most significant challenge was heat. People were more willing to pay for heat mitigation measures due to their cost-effectiveness and frequency of occurrence. Timber and composite were preferred in Barbados, Hempcrete and composite cement in

Barbados Jamaica Trinidad & Tobago

Average ROI for Residential units and SMEs for the Three Countries

Table: Factors Influencing Buying Decisions

<table>
<thead>
<tr>
<th>Factor</th>
<th>Barbados</th>
<th>Jamaica</th>
<th>Trinidad & Tobago</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less exposure to extreme climate events (wind, flood, heat, etc.)</td>
<td>2.9</td>
<td>3.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Affordability/Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to financing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location/Neighbourhood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance with building codes/quality</td>
<td>4.5</td>
<td>4.3</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Figure 6.2 Factors influencing buying decisions of residential and commercial buildings for Barbados, Jamaica and Trinidad and Tobago
Jamaica and Timbercrete and composite cement in Trinidad for constructing outer walls.

Factors such as geographical location, vulnerability to different climate change hazards, economic conditions as well as awareness, play significant roles in shaping the demand for these measures.

As such, it would be helpful to create a resilient construction certification that outlines the required resiliency measures for the country in order for the property to be considered resilient in the face of local climate change threats. Such a certification would allow for certain real estate assets to be labeled green. Investors and financial institutions seeking to channel green funding would be incentivized to create specialized financial products and offerings for such projects.

IDB Invest, that has a mandate to advance private sector preparedness for climate change events, could also explore options to create schemes with financial institutions, to offer loans to certified resilient properties that are insured, where IDB Invest absorbs the upfront premium associated with resilient construction, with the assumption that there would be cost savings for the insurance company in the case of climate change trigger event (e.g. hurricane, heat wave, flooding).

Finance and Insurance

According to the market consultations, there is a market for integrating climate resilience into new and existing infrastructure. There is however, a reluctance from developers to take any action that would reduce profit margins and raise consumer prices.

To address this, capacity building is required to allow the construction industry to experiment with prototypes that meet purchasers’ security and social needs as well as encourage developers to incorporate these measures in construction.

There is also a clear need to educate consumers on the importance of climate resilient infrastructure to reduce risks and potential losses as well as inform them on available mortgage financing options. Mortgage insurance is generally acquired as a mandatory requirement to obtain a mortgage, however, up to 15% of respondents found it unaffordable. This has been exacerbated by a decrease in reinsurability capacity regionally resulting in price increases for catastrophe insurance ranged from 5% to 25% in 2021/2022.

Although financial institutions do not specifically offer products incorporating climate resilience measures, there is a willingness to include resilience add ons/ products in mortgage financing for new buildings or retrofitting existing infrastructure.
Conclusions

1. The 5-year potential for residential property development market in Barbados, Jamaica, and Trinidad and Tobago is estimated at US$6.25B, US$14.8B, and US$10B, respectively.

2. The 5-year potential for commercial property in the Barbados, Jamaica and Trinidad and Tobago is estimated at US$1.15B, US$2.2B, and US$2.5B, respectively.

3. There are 121,429 formally registered SMEs across the three countries, contributing 60%-70% to GDP in the Caribbean, bringing the estimated contribution for all three countries to 25.9 billion US$.

4. Climate trends and projections suggest decreasing rainfall, increased rainfall intensities, worsening drought conditions, increased intense hurricanes, hotter temperatures, and higher sea levels in the future.

5. Hurricane winds and floods are the most expensive hazards, followed by drought and heat waves. Prioritisation based on the number of people affected and AAL generally resulted in hurricane winds and floods being ranked 1st and either extreme heat or flooding ranking 2nd.

6. Of the four hazards, heat was highlighted as posing the most significant challenge, as the phenomenon was experienced daily by a larger number of respondents.

7. Insurance agents, risk assessors, and sellers noted that climatic events’ impact is not solely factored in assessing risks for coverage. Insurance is mostly sought on a compulsory basis, and coverage lags property values. Hurricanes have resulted in reinsurance cost increases of up to 25%.

8. Access to financing, affordability and cost were among the top motivating factors when purchasing residential and commercial property in all three countries.

9. Climate change resilience measures are generally economically viable for all four prioritised hazards in residential and SME developments, with an average ROI of 21x for residential units and 31x for SMEs across Barbados, Jamaica, and Trinidad and Tobago.

10. There is a market for incorporating climate resilience into new or pre-existing commercial and residential infrastructure, with the greatest willingness to pay for heat resilience measures.

Conclusions and Recommendations

11. Financial institutions do not offer products incorporating climate resilience measures into developing new infrastructure. However, mortgage financiers are willing to include resilience add-ons/products in mortgage financing to deal with drought and heat/cooling to new buildings or retrofit existing infrastructure.

12. Building capacity among developers, contractors, and planners is necessary, and capacity building should focus on allowing the construction industry to test various prototypes that will satisfy customers’ social and security needs.

Recommendations

i. It’s recommended that property owners consider resilience investments, as the average returns exceed 100%.

ii. Capacity building is necessary to create financial prototypes that meet purchasers’ social and security needs, and innovative lending arrangements should be designed to increase uptake.

iii. Initial lending products can target heat resilience measures, and there is potential for retrofitting existing infrastructure.

iv. Awareness building is necessary for consumers and the general public on climate resilience infrastructure and mortgage financing options.

v. Building codes in the three target countries need to be reviewed and updated for climate resilience.

vi. Engage registered architecture, engineering, project management and construction companies for building design and construction as this will increase the likelihood that building codes and international best practices are followed.